Cooperation of different neuronal systems during hand sign recognition.
نویسندگان
چکیده
Hand signs with symbolic meaning can often be utilized more successfully than words to communicate an intention; however, the underlying brain mechanisms are undefined. The present study using magnetoencephalography (MEG) demonstrates that the primary visual, mirror neuron, social recognition and object recognition systems are involved in hand sign recognition. MEG detected well-orchestrated multiple brain regional electrical activity among these neuronal systems. During the assessment of the meaning of hand signs, the inferior parietal, superior temporal sulcus (STS) and inferior occipitotemporal regions were simultaneously activated. These three regions showed similar time courses in their electrical activity, suggesting that they work together during hand sign recognition by integrating information in the ventral and dorsal pathways through the STS. The results also demonstrated marked right hemispheric predominance, suggesting that hand expression is processed in a manner similar to that in which social signs, such as facial expressions, are processed.
منابع مشابه
Applying mean shift and motion detection approaches to hand tracking in sign language
Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملReasoning about Body-Parts Relations for Sign Language Recognition
Over the years, hand gesture recognition has been mostly addressed considering hand trajectories in isolation. However, in most sign languages, hand gestures are defined on a particular context (body region). We propose a pipeline to perform sign language recognition which models hand movements in the context of other parts of the body captured in the 3D space using the MS Kinect sensor. In add...
متن کاملA syntactic learning method for hand gesture recognition
Hand gesture recognition has been a major challenge during the recent years. Many of the hand gesture recognition systems however, have been restricted to a few number of possible movements. Some applications such as gesture recognition in understanding sign languages, include a large number of classes and need an automatic learning method for extracting the features of each class. An important...
متن کاملComparative Study and Analysis for Gesture Recognition Methodologies
The diverse applications of hand gesture recognition system accepted it great attention especially in the past few years, besides the recognition system ability to interact with machine naturally and efficiently through human computer interaction. Hand gestures recognition system has different applications on different domains including virtual environments, graphic editor systems, sign languag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 23 1 شماره
صفحات -
تاریخ انتشار 2004